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Classical Computability Theory
What is computability?

• It’s a branch of mathematical logic that studies the
limits of what can be computed by algorithms; it
classifies problems as solvable (computable) or
unsolvable (uncomputable) by theoretical models.

• An algorithm is a step-by-step procedure (the order
matters) or rules to accomplish a specific task or
solve a problem.

• Theoretical computational models comprehend how
the output is obtained from the input, e.g., Turing
machine, RAM, decision tree, logic gates, recursive
function ... etc. 2/15



Classical Computability Theory
Limitations of Classical Computability
• Polynomial-time or Polynomial-sized circuit:
T (n) = O(nk) where k ̸= n or its multiples.

• Shannon f : {0,1}n →{0,1} needs T (n) ≥O(2n/n).
• A decision problem that can be solved “efficiently”

by a deterministic Turing machine is in class P.
• A decision problem that can be solved by a

non-deterministic Turing machine is in class NP .
• Non-deterministic does NOT mean probabilistic, i.e.
BPP ⊂NP

• P ⊂NP but P ̸= NP??
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Classical Computability Theory
BQP

• It has an error probability of at most 1/3 for all
instances.

• They explore many possibilities at the same time
using superposition.

• The outcome has a tiny chance of error as
interference enforces correct paths and cancels
wrong ones.

• Solving integer factorization in polynomial time is a
BQP not BPP .
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Conceptual Introduction to QM
Adiabatic Invariant

• (Einstein-Ehrenfest-Bohr): E = nhf =⇒ nh= E/f is
invariant under changing any variable ξ.

• e.g. E = 1
2
mv2 + 1

2
kx2 = p2

2m
+ 1

2
kx2

Define p=
√

2m(E− 1
2
kx2) such that

I =
∫ √

2E/k

0
pdx= E/f = 2πE/ω = 2πE

√
m

k

• dI

dk
= 0 =⇒ E/f = constant, i.e., any I with periodic

limits and of units [J.s] is defined as I = nh.
• C.f. M. Jammer, The Conceptual Development of Quantum Mechanics.

J. Mehra, H. Rechenberg, The Historical Development of Quantum Theory. 5/15



Conceptual Introduction to QM
de Broglie Matter Wave

• Hamilton’s least action: particles and mechanical
waves are governed by the same law. (Snell’s law)

• X-ray diffraction experiment: wave has momentum!
(Laue then Bragg then de Broglie(s))

• Electrons scattering as a diffraction phenomena.

λ= h

p

• Recall D(x) =Asin(kx±ωt) from PHYS 32,
d2Ψ
dx2 +k2Ψ = 0 Debye⇐===⇒ ||dS

dx
|| = κn iff Ψ =AeiS .
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Conceptual Introduction to QM
Schrödinger Equation
• Schrödinger replaced S by −ih̄ lnψ then asked:

what is equivalent to p in I = nh?

• It is dS
dx

= −ih̄ψ
′

ψ
or pψ = −ih̄dψ

dx

• For a free particle with K = p2/2m we have
1

2m
(−ih̄ d

dx
)2ψ = − h̄2

2m
d2

dx2ψ =Kψ.
And for bounded with potential V (x) it becomes[

− h̄2

2m
d2

dx2 +V (x)
]
ψ = Eψ

• This is called an eigenvalue/eigenvector problem!
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Conceptual Introduction to QM
Einstein coefficients

• Spontaneous absorption dNj/dt=BijNiρ(ϵj − ϵi).
• Spontaneous emission dNj/dt= −AjiNj .
• Stimulated emission dNi/dt=BjiNjρ(ϵj − ϵi).
• Absorption/emission rates Aij ∝Bij ∝ |Dij |2.
• Fourier transform Dij = qxij of dipole d= qx.

• IP ∝ ω4|Dij |2
Experiment⇐======⇒Aij ∝ IP =⇒Aij ∝ |xij |2.

• dNj

dt
= −dNi

dt

prove===⇒Ni ∝ e|xij |2t.
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Conceptual Introduction to QM
Probability and Transition Amplitude
• The probability no particle is emitted in time t is
P (t,N0), and that of some are emitted is P (t,N ̸=0).

• And for t+dt (mutually independent) it’s
P (t+dt,N0) = P (t,N0)×P (dt,N0)

• The change dP (t,N0) = P (t+dt,N0)−P (t,N0) =

−P (t,N0)
[
1−P (dt,N0)

]
= −P (t,N0)×P (dt,N ̸=0)

• dP (t,N0) = −P (t,N0)×−dNj/Nj =
−P (t,N0)×Aijdt. (Why −dNj/Nj not +dNj/Nj?)

• P (t,N0) ∝ e−|xij |2t =⇒ P (t,N ̸=0) = 1− e−|xij |2t

• P (t,N ̸=0) ∼ 1− (1−|xij |2t) =⇒ P (t,N ̸=0) ∝ |xij |2 9/15



Conceptual Introduction to QM
Heisenberg Matrix Mechanics
• Periodic motion:

xn =
∞∑

α=−∞
anαe

iαωnt k=n−α=====⇒ xn =
∞∑

k=−∞
anke

iωnkt

where from Ea−Eb = h̄ωab we must impose
ωnk = ωnj +ωjk for n > j > k, and ank = a∗kn.

• I =
∫
pndxn =m

∫
ẋndxn =m

∫
(ẋn)2dt=⇒

h̄=m
∑
α

(
|an,n+α|2ωn,n+α−|an,n−α|2ωn,n−α

)
• In addition, I =

∫
pndxn−

∫
xndpn = −ih̄. 10/15



Linear Algebra
Summary

• Vector addition:
(⃗v+ w⃗)j = vj +wj

• Vector scalar multiplication:
(c⃗v)j = cvj

• Matrix addition:
(M +N)ij =Mij +Nij

• Matrix scalar multiplication:

(cM)ij = c(Mij)
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Linear Algebra
Summary
• Matrix multiplication:

(MN)ij =
∑
k

MikNkj

• Matrix/vector complex conjugate:

(M∗)ij = (Mij)∗

• Matrix/vector transpose:
(MT )ij =Mji

• Matrix/vector conjugate transposed:

(M †)ij = ((M∗)T )ij = (Mji)∗ 12/15



Linear Algebra
Summary

• Inner / Scalar / Dot product:

v⃗ • w⃗ = v⃗ †w⃗ =
n∑

j=1
vT∗
j wj

• Norm of a vector:
∥v⃗∥ =

√
v⃗ • v⃗

• Projection of v⃗ onto w⃗:
Pv⃗,w⃗ = 1

∥w⃗∥
w⃗ • v⃗
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Linear Algebra
Summary

• Eigenvectors and eigenvalues:
Mv⃗ = λv⃗

[M −λI]⃗v = 0⃗

det[M −λI] = 0

• Matrix diagonaliztion
P−1MP =D

where P = [v1 v2 · · · ] for linearly independent vi. 14/15



Thank You!
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