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Hilbert Space
Space Properties
e Building block: 1 is a ket vector |¢)) with a dual
copy bra |[¢)f = (¢|. Classical quantities as x,p
turned out to be disguised matrices &, p.

e Components: A vector can’t exist alone, it needs a
space and basis/bases to describe it.

e Randomness & Reality: Solutions of Schrédinger

equation (energy eigenvalues) are exact and
determined. But finding the instantaneous |¢)’s

components would result generally in complex

transition amplitudes associated with expected
probabilities upon being squared, i.e. the outcome is 2/11

random.
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Hilbert Space
Space Properties
e Completeness: From the transition amplitudes and
their relations with probabilities, the sum of the

squared components of vector ¥ must be 1.

e Wave collapse: Once a measurement (the differential
equation) is applied, the wave will transform into
one of its components while other components
disappear such that the probability of finding the
system in that component becomes 1.

e Commutativity & Uncertainty: associated

. . https://en.wikipedia.org/wiki/Max_Bor
dynamical variables z,p do NOT commute as prEn et g o

Heisenberg showed: | [%,p] = ihl |= | AxzAp > h/2|. 3/11
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Hilbert Space
Inner Product Properties
e A finite-dimensional Hilbert space is the pair (H,(|))
where H= C" with inner product map (|) : HxH — C.

(lap+Be) = a(P|p) +B{Y|o) Vib,p,¢€H, a,B€C.
(Ple) =(pl)* Vi, p €N

(Yly) >0 Vi #0, P €H.

1]l = /(W) ,and d(v, ) := ||t — || Vib, € H.

Ly {¢i}i2 ; ;
e Vi) CH=C", Y ahy=0—=a'=0Va' cC=
=1
m<n Y
1/} = Z /8 Z,(;DZ v/l;z) S H. hitps://en wikipedia.org/wiki/David _Hilbert
=1

o {¢zJ_ ?:1 - <¢z|¢]> = 51] 4/11
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Linear Operators

e A linear operator A acting on the vectors of H is
the map A :H— H with A(¢)) € H V4 € H such that
A(otp + Byp) = aAv + BAp Vip,p €H, Vo, B € C,
(A+B)y = A+ By, and A(ay) = aAy).

e The set of linear operators on H is
B(H) := { A satisfying the above properties}

e A is invertible if 3A~! € B(H) such that
AA1=A"1A=1 and 1 € B(H).

e For {¢7}™ ,, the linear trace of A is defined as

tr(A) :== > (¢i|Ad;) € C.

i=1
o tr(ABC) =tr(BCA) =tr(CAB).

0.1 | l en
1
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httpss/en.wikipedia.org/wiki/ Transformation_matrix
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Hilbert Space
Eigenvalues and Spectral Theory

The adjoint of operator (AT)* = AT € B(H) is unique
for A € B(H) with (ATe|p) = (|Ap) Vib,p € H.

A is self-adjoint (or Hermitian ?) if A = AT,

The spectrum of A is the set of its eigenvalues:

o(A)={reC: A =,y e 0\{0}},
and the eigenspace is Hy = {¢, Ay = M} C H.

Spectral theorem: For A € B(H),

ATA = AAT < {1}, ¢7 €H).

The eigenvalues of self-adjoint operator are real.
For U = (¢1,¢7, - ¢r) where Ap = Afgl,

D =UAU' with D;; = A € o(A).

Normal
AAT=ATA
Unitary Hermitian
A=l Af=A
Orthogonal ; Symmetric
AT=A" AT=A
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Hilbert Space

Tensor Product of Vectors
e For two different spaces Hy and Hg with

x,9 € Hy and y,¢ € Hp, the tensor product
is the bilinear form:

Mj=aB_M,=a,B.
¢®90($7y) = <¢‘$>A<¢|y>3 \ay bs|as bolaz bylas b, 3 bi | lL’z Ei by, | b, E

e The space Hy @ Hg has inner product as % | %2 | o) By | bz |_ abomibuaabyisby i bs | ba fi bs | be
’ ’ ’ ’ 93|94 | | bs|bs | |ashyashaasbiashsl | by | b, by | by |

W@l @'Y = (W) alole) B ; Pl s A s I e oy e
Vap,1)' € Hy and ¢, € Hp. M Wap M aB

e For Ac®B(Hs) and B € B(Hp), then
(A® B)(y®@¢) = AYp® Bp.

e B(Hy)®B(Hp) =B(H4®Hp), i.e., for
CeBH4®HR), C= %Ak@)Bk.

7/11
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Hilbert Space

Pure & Mixed States 1)
e For {qbl}Z 1, the prOJector operator is

PA=;|¢¢> <¢i|=§1|¢i><¢i|. A/t

e This means A can be decomposed into Py as
A= )" AP 10}
AEa(A)
e Pure states are equivalence classes of unit vectors |—>

V) ~ o) = Ja € R, [¥) =) for [¢),|¢) €H

and (P|yh) = (ple) = 1. i 0) + 1)
e For pure states, we define A= py, := 1) (9| |0>\{§|1>
o For mixed states py := > pi|v;)(¥i| with |-) = 7

Zpi =1, p; 20. ! 8/11
1
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Hilbert Space
Coherent Superposition 1)
o S(H)={peB(H), p=0, tr(p) =1}.

e > aili) +)
Coherent Superposition ¥ = L €H, a; € C. A

152 aihi)] ///'

) =al0)+8[1), a@,BeC, |a*+|8P=1

\ >—[0)
al? ap*
%mZWNW:<H 5>. )

a*f|8P
e If two alternatives contribute amplitudes A; and A, 0) + |1)
then Pagp, = | Ay + As|* = [A1[? + | Ay[2 + 2Re(Af Ay) RS
e For incoherent superposition, Re(AfAs) =0 and pincon is |=) = |O>\;§|1)

diagonal. 9/11
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Hilbert Space
Entanglement

e Pure states |¢) € Ha, |¢) € Hp define a composite pure state
|t) ®|p) € H4a ®Hp, but a general |¥) need not factorize.

e A pure state is separable iff |U) = [1)) ® |¢); otherwise it is entangled;
subsystems are correlated and no independent pure state description.

e A mixed state (density operator) p is separable iff
pP=>;Di pZ(A) ®p2(-B), pi >0, > .pi=1; otherwise p is entangled.

e For pure states, the mixed-state separability condition reduces to the
product-state criterion; e.g. |¥) = %GOO) +11)) is entangled and a local

measurement on one qubit collapses the joint state (to |00) or |11)).
10/11
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