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1. Hilbert Space
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Hilbert Space
Space Properties
• Building block: ψ is a ket vector |ψ⟩ with a dual

copy bra |ψ⟩† = ⟨ψ|. Classical quantities as x,p
turned out to be disguised matrices x̂, p̂.

• Components: A vector can’t exist alone, it needs a
space and basis/bases to describe it.

• Randomness & Reality: Solutions of Schrödinger
equation (energy eigenvalues) are exact and
determined. But finding the instantaneous |ψ⟩’s
components would result generally in complex
transition amplitudes associated with expected
probabilities upon being squared, i.e. the outcome is
random.
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Hilbert Space
Space Properties
• Completeness: From the transition amplitudes and

their relations with probabilities, the sum of the
squared components of vector ψ must be 1.

• Wave collapse: Once a measurement (the differential
equation) is applied, the wave will transform into
one of its components while other components
disappear such that the probability of finding the
system in that component becomes 1.

• Commutativity & Uncertainty: associated
dynamical variables x,p do NOT commute as
Heisenberg showed: [x̂, p̂] = ih̄1 =⇒ ∆x∆p≥ h̄/2 . 3/11



Hilbert Space
Inner Product Properties
• A finite-dimensional Hilbert space is the pair (H,⟨|⟩)

where H ≡ Cn with inner product map ⟨|⟩ : H×H → C.
• ⟨ψ|αφ+βϕ⟩ = α⟨ψ|φ⟩+β⟨ψ|ϕ⟩ ∀ψ,φ,ϕ ∈ H, α,β ∈C.
• ⟨ψ|φ⟩ = ⟨φ|ψ⟩∗ ∀ψ,φ ∈ H.
• ⟨ψ|ψ⟩> 0 ∀ψ ̸= 0, ψ ∈ H.
• ||ψ|| =

√
⟨ψ|ψ⟩ ,and d(ψ,φ) := ||ψ−φ|| ∀ψ,φ ∈ H.

• ∀ψi ∈ H ≡ Cn,
n∑
i=1

αiψi = 0
{ϕi}ni=1⇐====⇒ αi = 0 ∀αi ∈ C =⇒

ψ =
m⩽n∑
i=1

βiψi ∀ψ ∈ H.

• {ϕ⊥i }ni=1 ⇐⇒ ⟨ϕi|ϕj⟩ = δij . 4/11



Hilbert Space
Linear Operators
• A linear operator A acting on the vectors of H is

the map A : H → H with A(ψ) ∈ H ∀ψ ∈ H such that
A(αψ+βφ) = αAψ+βAφ ∀ψ,φ ∈ H, ∀α,β ∈ C,
(A+B)ψ =Aψ+Bψ, and A(αψ) = α(Aψ).

• The set of linear operators on H is
B(H) := {A satisfying the above properties}

• A is invertible if ∃A−1 ∈B(H) such that
AA−1 =A−1A= 1 and 1 ∈B(H).

• For {ϕ⊥i }ni=1, the linear trace of A is defined as
tr(A) :=

∑
i=1

⟨ϕi|Aϕi⟩ ∈ C.

• tr(ABC) = tr(BCA) = tr(CAB).
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Hilbert Space
Eigenvalues and Spectral Theory
• The adjoint of operator (AT )∗ =A† ∈B(H) is unique

for A ∈B(H) with ⟨A†ψ|φ⟩ = ⟨ψ|Aφ⟩ ∀ψ,φ ∈ H.
• A is self-adjoint (or Hermitian ?) if A=A†.
• The spectrum of A is the set of its eigenvalues:
σ(A) = {λ ∈ C :Aψ = λψ,ψ ∈ H\{0}},
and the eigenspace is Hλ = {ψ,Aψ = λψ} ⊂ H.

• Spectral theorem: For A ∈B(H),
A†A=AA† ⇐⇒∃{ϕ⊥i }ni=1, ϕ

⊥
i ∈ Hλ.

• The eigenvalues of self-adjoint operator are real.
• For U = (ϕ⊥1 ,ϕ⊥i , · · ·ϕ⊥n ) where Aϕ⊥i =A†ϕ⊥i ,
D = UAU † with Dii = λ ∈ σ(A).
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Hilbert Space
Tensor Product of Vectors

• For two different spaces HA and HB with
x,ψ ∈ HA and y,φ ∈ HB, the tensor product
is the bilinear form:
ψ⊗φ(x,y) = ⟨ψ|x⟩A⟨φ|y⟩B.

• The space HA⊗HB has inner product as
⟨ψ⊗φ|ψ′⊗φ′⟩ = ⟨ψ|ψ′⟩A⟨φ|φ′⟩B
∀ψ,ψ′ ∈ HA and φ,φ′ ∈ HB.

• For A ∈B(HA) and B ∈B(HB), then
(A⊗B)(ψ⊗φ) =Aψ⊗Bφ.

• B(HA)⊗B(HB) = B(HA⊗HB), i.e., for
C ∈B(HA⊗HB), C =

∑
k

Ak⊗Bk. 7/11



Hilbert Space
Pure & Mixed States
• For {ϕi}ni=1, the projector operator is
Pλ =

n∑
i=1

|ϕi⟩⊗⟨ϕi| =
n∑
i=1

|ϕi⟩⟨ϕi|.

• This means A can be decomposed into Pλ as
A=

∑
λ∈σ(A)

λPλ.

• Pure states are equivalence classes of unit vectors
|ψ⟩ ∼ |φ⟩ ⇐⇒ ∃α ∈ R, |ψ⟩ = eiα|φ⟩ for |ψ⟩, |φ⟩ ∈ H

and ⟨ψ|ψ⟩ = ⟨φ|φ⟩ = 1.
• For pure states, we define A≡ ρψ := |ψ⟩⟨ψ|.
• For mixed states ρψ :=

∑
i
pi|ψi⟩⟨ψi| with∑

i
pi = 1, pi ⩾ 0. 8/11



Hilbert Space
Coherent Superposition
• S(H) = {ρ ∈B(H), ρ⩾ 0, tr(ρ) = 1}.

• Coherent Superposition Ψ =
∑

iai|ψi⟩
||
∑

iai|ψi⟩||
∈ H, ai ∈ C.

• |ψ⟩ = α|0⟩+β|1⟩, α,β ∈ C, |α|2 + |β|2 = 1.
•

ρcoh = |ψ⟩⟨ψ| =

(
|α|2 αβ∗

α∗β |β|2

)
.

• If two alternatives contribute amplitudes A1 and A2,
then Pcoh =

∣∣A1 +A2
∣∣2 = |A1|2 + |A2|2 +2Re(A∗

1A2) .
• For incoherent superposition, Re(A∗

1A2) = 0 and ρincoh is
diagonal. 9/11



Hilbert Space
Entanglement

• Pure states |ψ⟩ ∈ HA, |φ⟩ ∈ HB define a composite pure state
|ψ⟩⊗ |φ⟩ ∈ HA⊗HB, but a general |Ψ⟩ need not factorize.

• A pure state is separable iff |Ψ⟩ = |ψ⟩⊗ |φ⟩; otherwise it is entangled;
subsystems are correlated and no independent pure state description.

• A mixed state (density operator) ρ is separable iff
ρ=

∑
i pi ρ

(A)
i ⊗ρ(B)

i , pi ≥ 0,
∑

i pi = 1; otherwise ρ is entangled.
• For pure states, the mixed-state separability condition reduces to the

product-state criterion; e.g. |Ψ⟩ = 1√
2

(
|00⟩+ |11⟩

)
is entangled and a local

measurement on one qubit collapses the joint state (to |00⟩ or |11⟩).
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Thank You!
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